Rules and trends of metal cation driven hydride-transfer mechanisms in metal amidoboranes.
نویسندگان
چکیده
Group I and II metal amidoboranes have been identified as one of the promising families of materials for efficient H(2) storage. However, the underlying mechanism of the dehydrogenation of these materials is not well understood. Thus, the mechanisms and kinetics of H(2) release in metal amidoboranes are investigated using high level ab initio calculations and kinetic simulations. The metal plays the role of catalyst for the hydride transfer with formation of a metal hydride intermediate towards the dehydrogenation. In this process, with increasing ionic character of the metal hydride bond in the intermediate, the stability of the intermediate decreases, while the dehydrogenation process involving ionic recombination of the hydridic H with the protic H proceeds with a reduced barrier. Such correlations lead directly to a U-shaped relationship between the activation energy barrier for H(2) elimination and the ionicity of metal hydride bond. Oligomerized intermediates are formed by the chain reaction of the size-driven catalytic effects of metals, competing with the non-oligomerization pathway. The kinetic rates at low temperatures are determined by the maximum barrier height in the pathway (a Lambda-shaped relation), while those at moderately high temperatures are determined by most of multiple-barriers. This requires kinetic simulations. At the operating temperatures of proton exchange membrane fuel cells, the metal amidoboranes with lithium and sodium release H(2) along both oligomerization and non-oligomerization paths. The sodium amidoboranes show the most accelerated rates, while others release H(2) at similar rates. In addition, we predict that the novel metal amidoborane-based adducts and mixtures would release H(2) with accelerated rates as well as with enhanced reversibility. This comprehensive study is useful for further developments of active metal-based better hydrogen storage materials.
منابع مشابه
Metal amidoboranes: superior double-hydrogen-transfer agents in the reduction of ketones and imines.
Metal amidoboranes (MABs), such as lithium amidoborane (LiAB), show superior ability in reducing ketones and imines directly into their corresponding secondary alcohols and amines, respectively, at room temperature with high conversion and yields. A mechanistic study indicates that the reduction proceeds through a double-hydrogen-transfer process. Both protic H(N) and hydridic H(B) protons in t...
متن کاملTechnical Note Conjugate heat and mass transfer in metal hydride beds in the hydriding process
Metal hydride applications span a wide variety of tech! nologies\ e[g[\ energy conversion\ chemical compressors and hydrogen storage[ A knowledge of heat and mass transfer in a metal hydride reactor during the absorption and desorption of hydrogen is important for performance optimization of the reactor[ One of the key requirements in the design of metal hydride bed is the enhancement of the e}...
متن کاملHeat Transfer in High-Pressure Metal Hydride Systems
High-pressure metal hydride vehicular hydrogen storage systems can offer good overall gravimetric and volumetric hydrogen densities. Enhanced heat transfer techniques will be essential to achieve established goals for tank filling times. A numerical model is developed to simulate the hydrogen filling process of a subscale high-pressure metal hydride (Ti1.1CrMn) system. The model is validated by...
متن کاملMetal Hydride Heat Storage Technology for Directed Energy Weapon Systems
Directed Energy Weapon (DEW) systems in a pulse operation mode dissipate excessively large, transient waste heat because of their inherent inefficiencies. The heat storage system can store such a pulsed heat load not relying on oversized systems and dissipate the stored heat over time after the pulse operation. A compressor-driven metal hydride heat storage system was developed for efficient, c...
متن کاملThe pH effect on complexation of Alkali metal cation by p-sulfonatocalix (4) arene in aqueous solution
The complexation of Alkali metal cations by the water-soluble p-sulfonic acid calix(4)arenewas thermodynamically characterized using spectrophotometeric data which are consistentwith the formation of a 1:1 complex resulting from electrostatic interactions between thesulfonato groups and alkali metal cations. In this study, we determined the formationconstants (log K) of the complexes and have c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 12 20 شماره
صفحات -
تاریخ انتشار 2010